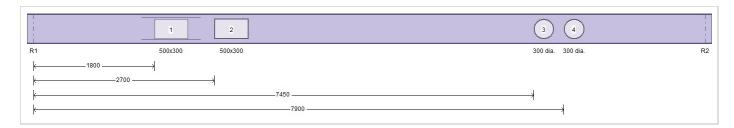
EuroBeam from Greentram Software Typical calculations

Printed 11 Aug 2016

EuroBeam 2.90a 150001

Web Opening Analysis


Beam: SCI Web Openings book example p.87 457x191x74 S355 Span: 10.00m.

SECTION SIZE: 457 x 191 x 74 UKB S355

Dimensions (mm): D: 457.0 B: 190.4 T: 14.5 t: 9.0 d: 407.6 CSA: 94.6 cm²

Openings: 1. 500 x 300mm at 1.800m. from R1

- 2. 500 x 300mm at 2.700m.
- 3. 300mm dia.at 7.450m.
- 4. 300mm dia.at 7.900m.

Web opening 1: 500mm x 300mm deep, 1.80 - 2.30 m from R1, vertically centered about N.A.

Upper and lower tee depths = 64.0/78.5 mm excluding/including flange

Single-sided 80 x 10 stiffeners, top and bottom, 10 mm clear of opening (user-selected size)

Check opening position and size [P355 2.7]

Max height of opening (300 mm) <= 0.7h (320 mm) OK

Stiffened opening length (500 mm) $<= 4.0h_0$ (1,200 mm) OK

Stiffened opening length (500 mm) in high shear area <= 2.5h_o (750 mm) OK

Opening corners to be predrilled to a minimum radius of 18 mm

Check R1 end post width (1800 mm) >= h (457 mm) and >= I₀ (500 mm) OK

Check no point loads within 0.5h (229 mm) of opening: N/A

Top and bottom tee section classifications

Top and bottom stiffened tee sections are Class 2, compact (stiffener outstands <= 10te)

Check moment resistance at opening

Moment at centre of opening = 134.2kNm (6.10)

As $< 0.75 M_{Ed,max}$, take M_{Ed} as $0.75 M_{Ed,max} = 0.75$ x 205.9 = 154.4 kNm [P355 3.1.3]

Areas of top and bottom tees = 3,380 mm²

Stiffener area = $1 \times 10 \times 80 = 800 \text{ mm}^2$

Stiffened tee areas = 4,180 mm²

Tee elastic axes from outer faces of flanges, zel: 23.6 mm

Tee elastic axis centres = 457.0 - (23.6 + 23.6) = 409.8 mm

Compression/tension forces in tees arising from moment = 154.4 x 1000/409.8 = 327 kN

Compression resistance of top tee = $A.f_v/1.0 = 4,180 \times 355/(1.0 \times 1000) = 1,484 \text{ kN OK}$

Tensile resistance of bottom tee = $A.f_v/1.0 = 4,180 \times 355/(1.0 \times 1000) = 1,484 \text{ kN OK}$

Check shear resistance at opening

Use shear at R1 end of opening, $V_{Ed} = 52.7 \text{ kN}$ (6.10)

As $V_{Ed} >= 0.25V_{Ed,max}$ (0.25 x -82.3 = -20.6 kN), use 52.7 kN as design value [P355 3.1.3]

Shear is divided between top and bottom tees in proportion to their bending resistances

Top/bottom tee shear, $V_{Ed} = 0.500/0.500 \times 52.70 = 26.35/26.35 \text{ kN}$

Printed 11 Aug 2016

EuroBeam 2.90a 150001

```
Shear areas of tees A_{v.t}/A_{v.b} = (4,365 - (300 \times 9.0))/2 = 832/832 \text{ mm}^2 Stiffener area ignored [P355 5.2.6] Shear resistances of tees V_{Rd} = (A_v f_v / \sqrt{3})/g_{M0} = (832 \times 355/\sqrt{3})/(1.0 \times 1000) = 170.6 \text{ kN OK}
```

Calculate tee moment resistance

Full thickness of web can be considered when calculating bending resistance if $V_{Ed} <= 0.5 V_{Rd}$ otherwise effective web thickness, $t_{w,eff} = t_w (1 - (2m-1)^2)$ where $m = V_{Ed}/V_{Rd}$ [P355 3.4.3/5.2.6]

Top tee:
$$V_{Ed} = 26.4 \text{ kN}$$
; $V_{Rd} = 170.6 \text{kN}$; $t_{w,eff} = t_w = 9.0 \text{ mm}$
Bottom tee: $V_{Ed} = 26.4 \text{ kN}$; $V_{Rd} = 170.6 \text{kN}$; $t_{w,eff} = t_w = 9.0 \text{ mm}$

Tee
$$W_{pl,v} = A_w (0.5h_w + t_f - z_{pl}) + (A_f (0.5h_f - z_{pl} + z_{pl}^2/t_f)$$

Top tee plastic modulus, $W_{pl,v,t} = 75.1 \text{ cm}^3 \text{ (}z_{pl} = 10.9 \text{ mm)}$

Moment resistance, $M_{pl,Rd} = f_y \cdot W_{pl,y,t} / g_{M0} = 355 \times 75.1 / (1000 \times 1.0) = 26.7 \text{ kNm}$

Reduction factor to allow for axial forces = $1 - N_{TEd}/N_{Rd} = 1 - (327/1,484) = 0.779$ [P355 5.2.5 (60)]

Net moment resistance, $M_{pl,N,Rd} = 0.779 \times 26.7 = 20.8 \text{ kNm}$

Bottom tee plastic modulus, $W_{pl,y,b} = 75.1 \text{ cm}^3 \text{ (}z_{pl} = 10.9 \text{ mm)}$

Moment resistance, $M_{pl,Rd} = f_y \cdot W_{pl,y,b} / g_{M0} = 355 \times 75.1 / (1000 \times 1.0) = 26.7 \text{ kNm}$

Reduction factor to allow for axial forces = $1 - N_{T,Fd}/N_{Rd} = 1 - (327/1,484) = 0.779$ [P355 5.2.5 (60)]

Net moment resistance, $M_{pl,N,Rd} = 0.779 \times 26.7 = 20.8 \text{ kNm}$

Ratio of moment capacities top/bottom = 0.500/0.500

Vierendeel moment resulting from shear

Vierendeel moment = $V_{Ed}.I_{e}$ = 52.7 x 500/1000 = 26.4 kNm

Vierendeel resistance = $2M_{pl,t} + 2M_{pl,b} = 2 \times 20.8 + 2 \times 20.8 = 83.1 \text{ kNm OK}$

Stiffener anchorage length, I_v

Use 6 mm fillet welds: throat size, $a = 0.7 \times 6 = 4.2 \text{ mm}$

Fillet weld design shear strength $f_{vw,d} = (f_u/\sqrt{3})/(B_w.g_{M2}) = (470/\sqrt{3})/(0.90 \text{ x } 1.25) = 241 \text{ N/mm}^2$ [EC3-1-8 4.5.3.3]

Stiffener design force, $F_r = A_r \cdot f_{yr/g_{Mo}} = 800 \times 355/(1000 \times 1.0) = 284 \text{ kN}$

Determine minimum anchorage length considering ... [P355 5.2.2 (55)]

a. ... weld shear resistance, min $I_v = F_r/(2.n.a.f_{vw.d}) = 284 \times 1000/(2 \times 1 \times 4.2 \times 241) = 140 \text{ mm}$

b. ... stiffener shear resistance, min $I_v = F_r / (n.t_f.f_{v,t}/(g_{M0}\sqrt{3})) = 284 \times 1000/(1 \times 10 \times 355/(1.0 \sqrt{3})) = 139 \text{ mm}$

c.... web shear resistance, min $I_v = F_r/(2.n.t_w.f_{y,t}/(g_{M0}\sqrt{3})) = 284 \times 1000/(2 \times 1 \times 9.0 \times 355/(1.0 \sqrt{3})) = 77.0 \text{ mm}$

... or 150mm, 0.25l_o (125 mm) or 2b_r (160 mm)

... or $2b_r \cdot t_r / (0.96 \times t_w) = 2 \times 80 \times 10 / (0.96 \times 9.0) = 185 \text{ mm}$ [P355 5.2.3 (56)]

Required minimum stiffener anchorage length = 185 mm, say 200 mm; min O/A stiffener length = 880 mm

Additional check for single sided stiffeners

Check
$$(t_r/t_w)$$
 (1.11) <= 0.96 $l_v/2b_r$ (1.14) and <= 1.0 FAIL [P355 (56)]

Web opening 2: 500mm x 300mm deep, 2.70 - 3.20 m from R1, vertically centered about N.A.

Upper and lower tee depths = 64.0/78.5 mm excluding/including flange Opening is unstiffened

Check opening position and size [P355 2.7]

Max height of opening (300 mm) <= 0.7h (320 mm) OK

Depth of unstiffened top tee (78.5 mm) $>= 0.1 I_0$ (50.0 mm) OK

Unstiffened opening length (500 mm) $<= 2.5h_0$ (750 mm) OK

Opening corners to be predrilled to a minimum radius of 18 mm

Check no point loads within h (457 mm) of opening: N/A

Top and bottom tee section classifications

Top and bottom tee sections are Class 2, compact

EuroBeam 2.90a 150001

Check moment resistance at opening

Moment at centre of opening = 171.3kNm (6.10)

As $> 0.75M_{Ed\ max}$, 0.75 x 205.9 = 51.5 kNm, use 171.3 kNm as design value [P355 3.1.3]

Areas of top and bottom tees = 3,380 mm²

Tee elastic axes from outer faces of flanges, zel: 14.0 mm

Tee elastic axis centres = 457.0 - (14.0 + 14.0) = 428.9 mm

Compression/tension forces in tees arising from moment = 171.3 x 1000/428.9 = 399 kN

Compression resistance of top tee = $A.f_y/1.0 = 3,380 \times 355/(1.0 \times 1000) = 1,200 \text{ kN OK}$

Tensile resistance of bottom tee = $A.f_v/1.0 = 3,380 \times 355/(1.0 \times 1000) = 1,200 \text{ kN OK}$

Check shear resistance at opening

Use shear at R1 end of opening, $V_{Ed} = 37.9 \text{ kN}$ (6.10)

As $V_{Ed} >= 0.25V_{Ed max}$ (0.25 x -82.3 = -20.6 kN), use 37.9 kN as design value [P355 3.1.3]

Shear is divided between top and bottom tees in proportion to their bending resistances

Top/bottom tee shear, $V_{Ed} = 0.500/0.500 \times 37.88 = 18.94/18.94 \text{ kN}$

Shear areas of tees $A_{v,t}/A_{v,b} = (4,365 - (300 \times 9.0))/2 = 832/832 \text{ mm}^2$

Shear resistances of tees $V_{Rd} = (A_v f_v / \sqrt{3})/g_{MO} = (832 \times 355 / \sqrt{3})/(1.0 \times 1000) = 170.6 \text{ kN OK}$

Calculate tee moment resistance

Full thickness of web can be considered when calculating bending resistance if $V_{Ed} <= 0.5 V_{Rd}$ otherwise effective web thickness, $t_{w,eff} = t_w (1 - (2m - 1)^2)$ where $m = V_{Ed} / V_{Rd}$ [P355 3.4.3]

Top tee:
$$V_{Ed}$$
 = 18.9 kN; V_{Rd} = 170.6kN; $t_{w,eff}$ = t_{w} = 9.0 mm
Bottom tee: V_{Ed} = 18.9 kN; V_{Rd} = 170.6kN; $t_{w,eff}$ = t_{w} = 9.0 mm

Tee
$$W_{pl,v} = A_w (0.5h_w + t_f - z_{pl}) + (A_f (0.5h_f - z_{pl} + z_{pl}^2/t_f)$$

Top tee plastic modulus, $W_{pl,v,t} = 32.2 \text{ cm}^3 \text{ (}z_{pl} = 8.76 \text{ mm)}$

Moment resistance, $M_{pl,Rd} = f_v \cdot W_{pl,v,t} / g_{M0} = 355 \times 32.2 / (1000 \times 1.0) = 11.4 \text{ kNm}$

Reduction factor to allow for axial forces = $1 - N_{T,Ed}/N_{Rd} = 1 - (399/1,200)^2 = 0.889$ [P355 3.4.4 (20)]

Net moment resistance, $M_{pl.N.Rd} = 0.889 \times 11.4 = 10.2 \text{ kNm}$

Bottom tee plastic modulus, $W_{pl,\gamma,b} = 32.2 \text{ cm}^3 \text{ (z}_{pl} = 8.76 \text{ mm)}$

Moment resistance, $M_{pl,Rd} = f_y \cdot W_{pl,y,b} / g_{M0} = 355 \times 32.2 / (1000 \times 1.0) = 11.4 \text{ kNm}$

Reduction factor to allow for axial forces = $1 - N_{T,Ed}/N_{Rd} = 1 - (399/1,200)^2 = 0.889$ [P355 3.4.4 (20)]

Net moment resistance, $M_{pl.N.Rd} = 0.889 \times 11.4 = 10.2 \text{ kNm}$

Ratio of moment capacities top/bottom = 0.500/0.500

Vierendeel moment resulting from shear

Vierendeel moment = $V_{Ed} \cdot I_{e}$ = 37.9 x 500/1000 = 18.9 kNm

Vierendeel resistance = $2M_{pl,t} + 2M_{pl,b} = 2 \times 10.2 + 2 \times 10.2 = 40.6 \text{ kNm OK}$

Web opening 3: 300mm dia, 7.45 - 7.75 m from R1, vertically centered about N.A.

Upper and lower tee depths = 64.0/78.5 mm excluding/including flange

Take circular opening height as $0.9h_0$: tee depths taken as 79.0/93.5 mm Opening is unstiffened

Check opening position and size [P355 2.7]

Diameter of opening (300 mm) <= 0.8h (366 mm) OK

Depth of tee stems (64.0 mm) >= 30 mm OK

Check no point loads within 0.5h (229 mm) of opening: N/A

EuroBeam 2.90a 150001

Top and bottom tee section classifications

Top and bottom tee sections are Class 3, semi-compact

Check moment resistance at opening

Moment at centre of opening = 150.2kNm (6.10)

As
$$< 0.75M_{Ed\ max}$$
, take $M_{Ed\ as}$ 0.75 $M_{Ed\ max}$ = 0.75 x 205.9 = 154.4 kNm [P355 3.1.3]

Areas of top and bottom tees = $3,515 \text{ mm}^2$

Tee elastic axes from outer faces of flanges, zel: 16.8 mm

Tee elastic axis centres = 457.0 - (16.8 + 16.8) = 423.4 mm

Compression/tension forces in tees arising from moment = 154.4 x 1000/423.4 = 355 kN

Compression resistance of top tee = $A.f_y/1.0 = 3,515 \times 355/(1.0 \times 1000) = 1,248 \text{ kN OK}$ Tensile resistance of bottom tee = $A.f_y/1.0 = 3,515 \times 355/(1.0 \times 1000) = 1,248 \text{ kN OK}$

Check shear resistance at opening

Use shear at R2 end of opening, $V_{Ed} = 45.3 \text{ kN}$ (6.10)

As
$$V_{Ed} >= 0.25V_{Ed,max}$$
 (0.25 x -82.3 = -20.6 kN), use 45.3 kN as design value [P355 3.1.3]

Shear is divided between top and bottom tees in proportion to their bending resistances

Top/bottom tee shear, $V_{Ed} = 0.500/0.500 \times 45.29 = 22.65/22.65 \text{ kN}$

Shear areas of tees $A_{v,t}/A_{v,b} = (4,365 - (300 \times 9.0))/2 = 967/967 \text{ mm}^2$

Shear resistances of tees $V_{Rd} = (A_v f_v / \sqrt{3})/g_{MO} = (967 \times 355 / \sqrt{3})/(1.0 \times 1000) = 198.3 \text{ kN OK}$

Calculate tee moment resistance

Full thickness of web can be considered when calculating bending resistance if $V_{Ed} <= 0.5 V_{Rd}$ otherwise effective web thickness, $t_{w,eff} = t_w (1 - (2m-1)^2)$ where $m = V_{Ed}/V_{Rd}$ [P355 3.4.3]

Top tee:
$$V_{Ed}$$
 = 22.6 kN; V_{Rd} = 198.3kN; $t_{w,eff}$ = t_{w} = 9.0 mm
Bottom tee: V_{Ed} = 22.6 kN; V_{Rd} = 198.3kN; $t_{w,eff}$ = t_{w} = 9.0 mm

Top tee elastic modulus, $W_{el,y,t} = 21.6 \text{ cm}^3 \text{ (}z_{el} = 16.8 \text{ mm)}$

Bending resistance, $M_{el,Rd} = f_y.W_{el,y,t}/g_{M0} = 355 \times 21.6/(1000 \times 1.0) = 7.66 \text{ kNm}$

Reduction factor to allow for axial forces = $1 - N_{T,Ed}/N_{Rd} = 1 - (355/1,248) = 0.919$ [P355 3.4.5 (23)]

Reduced elastic bending resistance, M_{el.N.Rd} = 0.919 x 7.66 = 7.04 kNm

Bottom tee elastic modulus, $W_{el,v,b} = 21.6 \text{ cm}^3 \text{ (}z_{el} = 16.8 \text{ mm)}$

Bending resistance, $M_{el,Rd} = f_y.W_{el,y,b}/g_{M0} = 355 \times 21.6/(1000 \times 1.0) = 7.66 \text{ kNm}$

Reduction factor to allow for axial forces = $1 - N_{T,Fd}/N_{Rd} = 1 - (355/1,248) = 0.919$ [P355 3.4.5 (23)]

Reduced elastic bending resistance, $M_{el,N,Rd} = 0.919 \times 7.66 = 7.04 \text{ kNm}$

Ratio of moment capacities top/bottom = 0.500/0.500

Vierendeel moment resulting from shear

Vierendeel moment = V_{Ed} . I_e = 45.3 x 135/1000 = 6.11 kNm (I_e = 0.45 h_o) [P355 3.1.4]

Vierendeel resistance = $2M_{el,t} + 2M_{el,b} = 2 \times 7.04 + 2 \times 7.04 = 28.2 \text{ kNm OK}$

Web opening 4: 300mm dia, 7.90 - 8.20 m from R1, vertically centered about N.A.

Upper and lower tee depths = 64.0/78.5 mm excluding/including flange

Take circular opening height as $0.9h_0$: tee depths taken as 79.0/93.5 mm

Opening is unstiffened

Check opening position and size [P355 2.7]

Diameter of opening (300 mm) <= 0.8h (366 mm) OK

Depth of tee stems (64.0 mm) >= 30 mm OK

Check R2 end post width (1800 mm) $>= 0.5h_0$ (150 mm) OK

EuroBeam 2.90a 150001

Check no point loads within 0.5h (229 mm) of opening: N/A

Top and bottom tee section classifications

Top and bottom tee sections are Class 3, semi-compact

Check moment resistance at opening

Moment at centre of opening = 129.3kNm (6.10)

As
$$< 0.75M_{Ed,max}$$
, take M_{Ed} as $0.75M_{Ed,max} = 0.75 \times 205.9 = 154.4 kNm [P355 3.1.3]$

Areas of top and bottom tees = 3,515 mm²

Tee elastic axes from outer faces of flanges, zel: 16.8 mm

Tee elastic axis centres = 457.0 - (16.8 + 16.8) = 423.4 mm

Compression/tension forces in tees arising from moment = 154.4 x 1000/423.4 = 305 kN

Compression resistance of top tee = $A.f_y/1.0 = 3,515 \times 355/(1.0 \times 1000) = 1,248 \text{ kN OK}$

Tensile resistance of bottom tee = $A.f_v/1.0 = 3,515 \times 355/(1.0 \times 1000) = 1,248 \text{ kN OK}$

Check shear resistance at opening

Use shear at R2 end of opening, $V_{Ed} = 52.7 \text{ kN}$ (6.10)

As
$$V_{Ed} >= 0.25V_{Ed,max}$$
 (0.25 x -82.3 = -20.6 kN), use 52.7 kN as design value [P355 3.1.3]

Shear is divided between top and bottom tees in proportion to their bending resistances

Top/bottom tee shear, $V_{Ed} = 0.500/0.500 \times 52.70 = 26.35/26.35 \text{ kN}$

Shear areas of tees $A_{v,t}/A_{v,b} = (4,365 - (300 \times 9.0))/2 = 967/967 \text{ mm}^2$

Shear resistances of tees $V_{Rd} = (A_v f_v / \sqrt{3})/g_{MO} = (967 \times 355 / \sqrt{3})/(1.0 \times 1000) = 198.3 \text{ kN OK}$

Calculate tee moment resistance

Full thickness of web can be considered when calculating bending resistance if $V_{Ed} <= 0.5 V_{Rd}$ otherwise effective web thickness, $t_{w,eff} = t_w (1 - (2m - 1)^2)$ where $m = V_{Ed}/V_{Rd}$ [P355 3.4.3]

Top tee:
$$V_{Ed} = 26.4 \text{ kN}$$
; $V_{Rd} = 198.3 \text{kN}$; $t_{w,eff} = t_{w} = 9.0 \text{ mm}$
Bottom tee: $V_{Ed} = 26.4 \text{ kN}$; $V_{Rd} = 198.3 \text{kN}$; $t_{w,eff} = t_{w} = 9.0 \text{ mm}$

Top tee elastic modulus, $W_{el,v,t} = 21.6 \text{ cm}^3 \text{ (}z_{el} = 16.8 \text{ mm)}$

Bending resistance, $M_{el,Rd} = f_y.W_{el,y,t}/g_{M0} = 355 \times 21.6/(1000 \times 1.0) = 7.66 \text{ kNm}$

Reduction factor to allow for axial forces = $1 - N_{T,Ed}/N_{Rd} = 1 - (305/1,248) = 0.940$ [P355 3.4.5 (23)]

Reduced elastic bending resistance, $M_{el,N,Rd} = 0.940 \text{ x } 7.66 = 7.20 \text{ kNm}$

Bottom tee elastic modulus, $W_{el,y,b} = 21.6 \text{ cm}^3 \text{ (}z_{el} = 16.8 \text{ mm)}$

Bending resistance, $M_{el,Rd} = f_v.W_{el,v,b}/g_{M0} = 355 \times 21.6/(1000 \times 1.0) = 7.66 \text{ kNm}$

Reduction factor to allow for axial forces = $1 - N_{T,Ed}/N_{Rd} = 1 - (305/1,248) = 0.940$ [P355 3.4.5 (23)]

Reduced elastic bending resistance, $M_{el,N,Rd} = 0.940 \times 7.66 = 7.20 \text{ kNm}$

Ratio of moment capacities top/bottom = 0.500/0.500

Vierendeel moment resulting from shear

Vierendeel moment = V_{Ed} . I_e = 52.7 x 135/1000 = 7.12 kNm (I_e = 0.45 I_0) [P355 3.1.4]

Vierendeel resistance = $2M_{el.t}$ + $2M_{el.b}$ = 2 x 7.20 + 2 x 7.20 = 28.8 kNm OK

Check web post dimensions [P355 2.7]

	Min	mm	Act mm		$V_{wp,Ed}$	$V_{wp,Rd}$	
1-2	0.5l _o	250	400	OK	88.4	246.0	ОК
2-3	0.5I _o	250	4250	OK	415.1	2613.2	ОК
3-4	0.3h _o	90	150	OK	48.8	92.2	OK

 $V_{wp,Ed}/V_{wp,Rd}$ Web post longtitudinal shear/shear resistance [P355 3.5.1, 3.5.4]