EuroBeam 2.90a 150001

Column calculation to EN1993-1-1 using S275 steel

Location: SCI Worked Examples 13: Column with reactions

Length: 5.0 m.

PoDur		Load	kN	Factored load		Offset	Momenty-y		Moment z-z	
				6.10a	6.10b		6.10a	6.10b	6.10a	6.10b
А	G	Load from above	377/1.35 = 279.3	377.0	348.7					
1	G	React	147/1.35 = 108.9	147.0	136.0	100	29.64	27.41		
3	G	React	37/1.35 = 27.4	37.0	34.2	100			3.83	3.55
4	G	React	28/1.35 = 20.7	28.0	25.9	100			-2.90	-2.68
Total load 436.3			589.0	544.8		29.64	27.41	0.93	0.86	

Load offsets are measured in mm. from faces of member; moments in kNm

Load durations: G: Dead

SECTION SIZE : 203 x 203 x 46 UKC S275

Section properties: B = 203.6mm D = 203.2mm T = 11.0mm t = 7.2mm $A_g = 58.7 \text{cm}^2$ $i_y = 8.82 \text{cm} i_z = 5.13 \text{cm} W_{\text{pl},y} = 497 \text{cm}^3 W_{\text{el},y} = 450 \text{cm}^3 W_{\text{pl},z} = 231 \text{cm}^3 W_{\text{el},z} = 152 \text{cm}^3$

Design strength, $f_v = 275 \text{ N/mm}^2$ e = 0.924

Classification: Flange: c/t = 88.0/11.0 = 8.00 <= 9e(8.32): Class 1, plastic

Web: c/t = 160.8/7.2 = 22.3 <= 396e/(13a - 1) = 30.5 : Class 1, plastic

 $a = 0.5(1 + N_{Ed}/(f_v.c.t_w)) = 0.5 \times (1 + 589 \times 1000/(275 \times 161 \times 7.20)) = 1.42$, but <=1.0 so 1.0 [SCI P362 Table 5.1 note 1]

Major axis: $L_{Ex} = 1.0L = 5.00$ m. Slenderness, $I_y = 5.00 \times 100/8.82 = 56.7$ Minor axis: $L_{Fy} = 1.0L = 5.00$ m. Slenderness, $I_z = 5.00 \times 100/5.13 = 97.5$

Length above = 3.00 m. (member assumed to be effectively continuous above and below reactions)

This section carries 3.00/(5.00+3.00) = 0.375 of applied moment [SN005]

Net moments: $M_v = 11.11$ kNm. $M_z = 0.35$ kNm.

This calculation is based on NCCI SN048b - only valid if bending moment diagrams about each axis are linear and the member is restrained at each floor level but unrestrained between floors. Only Class 1, 2 or 3 hot rolled I or H sections or rectangular hollow sections can be considered

Compression

[Table 5.2]

Design axial load, N_{Fd} = 589 kN

Design compression resistance, $N_{c.Rd} = A.f_v/g_{M0} = 58.7 \times 100 \times 275/(1.0 \times 1000) = 1,614 \text{ kN OK}$

Calculate flexural buckling resistances, N_{b.Rd}

Buckling about y-y (major) axis

 $I_y = I_y/93.9e = 56.7/(93.9 \times 0.924) = 0.653$ [EC3 6.3.1.3]

Use curve b: $\mathbf{a} = 0.340$ $\mathbf{f} = 0.5(1 + \mathbf{a}(\mathbf{I} - 0.2)\mathbf{I}^2) = 0.790$ [EC3 (6.49)]

Flexural buckling reduction factor, $c_v = 1/(f + \sqrt{(f^2 - I^2)}) = 0.810$ [EC3 (6.49)]

Design buckling resistance, $N_{b,y,Rd} = c_y A.f_y / g_{M1} = 0.810 \times 58.7 \times 100 \times 275 / (1.0 \times 1000) = 1,307 \text{ kN OK [EC3 (6.47)]}$

Buckling about z-z (minor) axis

 $\overline{I}_z = I_z/93.9e = 97.5/(93.9 \times 0.924) = 1.12$ [EC3 6.3.1.3] Use curve c: a = 0.490 f = $0.5(1 + a(\overline{I} - 0.2)\overline{I}^2) = 1.36$ [EC3 Table 6.2]

EuroBeam 2.90a 150001

Flexural buckling reduction factor, $c_z = 1/(f + \sqrt{(f^2 - 1^2))} = 0.472$ [EC3 (6.49)]

Design buckling resistance, $N_{b,z,Rd} = c_z A.f_v / g_{M1} = 0.472 \times 58.7 \times 100 \times 275 / (1.0 \times 1000) = 762 \text{ kN OK}$ [EC3 (6.47)]

Bending about y-y (major) axis:

Design moment, M_{v.Ed} = 11.1 kNm

Moment resistance, $M_{c.v.Rd} = f_v.W_{pl.v} = 275 \text{ x } 497/1000 = 136.7 \text{ kNm OK}$

Calculate buckling resistance moment

Design buckling resistance moment, $M_{b,y,Rd} = c_{LT,mod} \cdot M_{c,y,Rd}$

$$\begin{split} \mathsf{M}_{cr} &= \mathsf{C}_{1} (p^{2}\mathsf{EI}_{Z}/\mathsf{L}_{eff}^{-2}) [\sqrt{(\mathsf{I}_{W}/\mathsf{I}_{Z} + \mathsf{L}_{eff}^{-2}\mathsf{GI}_{1}/(p^{2}\mathsf{EI}_{Z})] } = 346 \text{ [NCCI SN003 2(1)]} \\ \mathbf{C}_{1} &= 1.77 \text{ (user-entered value) } \mathbf{I}_{LT} = \sqrt{(\mathsf{M}_{c,y,Rd}/\mathsf{M}_{cr})} = 0.628 \\ \mathbf{I}_{LT,0} &= 0.4 \quad \mathbf{b} = 0.75 \text{ [EC3 UK NA 2.17]} \\ \underline{\mathsf{U}}\text{se buckling curve b: } \mathbf{a} = 0.340 \text{ [EC3 Tables 6.3/6.4 NA2.17]} \\ \mathbf{f}_{LT} &= 0.5[1 + \mathbf{a}_{LT}(\mathbf{I}_{LT} - \mathbf{I}_{LT,0}) + \mathbf{bI}_{LT}^{-2}] = 0.687 \\ \mathbf{c}_{LT} &= 1/[\mathsf{f}_{LT} + \sqrt{(\mathsf{f}_{LT}^{-2} - \mathsf{bI}_{LT}^{-2})] = 0.904 \text{ [EC3 (6.56)]} \end{split}$$

 $M_{b,y,Rd} = c_{LT} M_{c,y,Rd} / g_{M} = 0.904 \text{ x } 136.7 / 1.0 = 123.6 \text{ kNm}$

Bending about z-z (minor) axis:

Design moment, $M_{z Ed} = 0.350 \text{ kNm}$

Moment resistance, M_{z.cb.Rd} = f_v.W_{pl.z} = 275 x 231.0/1000 = 63.5 kNm

Summary: $N_{Ed}/N_{min,b,Rd} = 589/762 = 0.773$ [1] $M_{y,Ed}/M_{bs} = 11.1/123.6 = 0.090$ [2] $M_{z,Ed}/M_{z,cb,Rd} = 0.350/63.5 = 0.006$ [3]

Sum of stress ratios [1] + [2] + 1.5 x [3] = 0.871 OK subject to all SN048b criteria being complied with

Baseplate calculation (considering axial load only)

Design compression force on baseplate, $N_{Ed} = 589$ kN Concrete grade C20/25: cylinder strength, $f_{ck} = 20$ N/mm² Concrete strength, $f_{cd} = a_{cc} \cdot f_{ck}/g_M = 0.85 \times 20/1.5 = 11.3 \text{ N/mm}^2$ Concrete design strength, $f_{jd} = b_j \cdot a \cdot f_{cd} = 11.3 \text{ N/mm}^2$ (b = 2/3; a taken as 1.5) [SN037 A2] Minimum area required = $F_c/f_{jd} = 589 \times 1000/11.3 = 51,971$ mm² Base is sized as a large projection base plate (equal projection from all faces of member) [EC3-1-8 6.2.5] Min required projection, c = 34.4mm Minimum base plate size = 272 x 273 mm Minimum thickness = $c \sqrt{(3 \times f_{jd}/f_y)} = 12.1 \text{ mm}$ ($f_y = 275 \text{ N/mm}^2$) Use 550 x 550 x 75mm S275 base plate Pressure on underside of plate = 589/51,971 = 11.3 N/mm² Bending stress at root of plate projection = 11.3 x 34.4 x (34.4/2)/(75 x 75/6) = 7.14 N/mm² OK

Notes

You can add your own notes to calculations if desired