Col umn calculation to EN1993-1-1 using S275 steel
Location: SC Worked Examples 13: Column with reactions
Length: 5.0 m

Load offsets are measured in mm. from faces of member; moments in kNm
Load durations: G: Dead

SECTION SIZE : $203 \times 203 \times 46$ UKC S275

Section properties: $B=203.6 \mathrm{~mm} \quad D=203.2 \mathrm{~mm} \quad T=11.0 \mathrm{~mm} \quad t=7.2 \mathrm{~mm} \quad A_{\mathrm{g}}=58.7 \mathrm{~cm}^{2}$

$$
\mathrm{i}_{\mathrm{y}}=8.82 \mathrm{~cm} \quad \mathrm{i}_{\mathrm{z}}=5.13 \mathrm{~cm} \quad \mathrm{~W}_{\mathrm{pl}, \mathrm{y}}=497 \mathrm{~cm}^{3} \quad \mathrm{~W}_{\mathrm{el}, \mathrm{y}}=450 \mathrm{~cm}^{3} \quad \mathrm{~W}_{\mathrm{pl}, \mathrm{z}}=231 \mathrm{~cm}^{3} \quad \mathrm{~W}_{\mathrm{el}, \mathrm{z}}=152 \mathrm{~cm}^{3}
$$

Design strength, $\mathrm{f}_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2} \quad \varepsilon=0.924$
Classification: Flange: $c / t=88.0 / 11.0=8.00<9 \varepsilon$ (8.32): Class 1, plastic
[Table 5.2] Web: c/t $=160.8 / 7.2=22.3 \Leftrightarrow 396 \varepsilon /(13 \alpha-1)=30.5:$ Class 1, plastic

$$
\alpha=0.5\left(1+N_{\mathrm{Ed}} /\left(\mathrm{f}_{\mathrm{y}} \cdot \mathrm{c} . \mathrm{t}_{\mathrm{w}}\right)\right)=0.5 \times(1+589 \times 1000 /(275 \times 161 \times 7.20))=1.42 \text {, but }<-1.0 \text { so } 1.0 \text { [SCI P362 Table } 5.1 \text { note 1] }
$$

Major axis: $\mathrm{L}_{\mathrm{Ex}}=1.0 \mathrm{~L}=5.00 \mathrm{~m}$ Slenderness, $\lambda_{\mathrm{y}}=5.00 \times 100 / 8.82=56.7$
Minor axis: $\mathrm{L}_{\text {Ey }}=1.0 \mathrm{~L}=5.00 \mathrm{~m}$ Slenderness, $\lambda_{z}=5.00 \times 100 / 5.13=97.5$
Length above $=3.00 \mathrm{~m}$ (member assumed to be effectively continuous above and below reactions)
This section carries $3.00 /(5.00+3.00)=0.375$ of applied moment [SN005]
Net moments: $M_{y}=11.11 \mathrm{kNm} \quad \mathrm{M}_{\mathrm{z}}=0.35 \mathrm{kNm}$
This calculation is based on NCCI SNO48b - only valid if bending moment diagrams about each axis are linear and the member is restrained at each floor level but unrestrained between floors. Only Class 1, 2 or 3 hot rolled I or H sections or rectangular hollow sections can be considered

Compression

Design axial load, $\mathrm{N}_{\mathrm{Ed}}=589 \mathrm{kN}$
Design compression resistance, $\mathrm{N}_{\mathrm{c}, \mathrm{Rd}}=\mathrm{A} . \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{M} 0}=58.7 \times 100 \times 275 /(1.0 \times 1000)=1,614 \mathrm{kN} \mathrm{OK}$
Calculate flexural buckling resistances, $\mathrm{N}_{\mathrm{b}, \mathrm{Rd}}$

Buckling about $y-y$ (major) axis

$\bar{\lambda}_{y}=\lambda_{y} / 93.9 \varepsilon=56.7 /(93.9 \times 0.924)=0.653$ [EC3 6.3.1.3]
Use curve b: $\alpha=0.340 \quad \phi=0.5\left(1+\alpha(\bar{\lambda}-0.2) \bar{\lambda}^{2}\right)=0.790[$ EC3 (6.49)]
Flexural buckling reduction factor, $\left.\chi_{y}=1 /\left(\phi+\sqrt{(} \phi^{2}-\bar{\lambda}^{2}\right)\right)=0.810$ [EC3 (6.49)]
Design buckling resistance, $\mathrm{N}_{\mathrm{b}, \mathrm{y}, \mathrm{Rd}}=\chi_{\mathrm{y}} \mathrm{A} . \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{M} 1}=0.810 \times 58.7 \times 100 \times 275 /(1.0 \times 1000)=1,307 \mathrm{kN} \mathrm{OK}[\mathrm{EC} 3(6.47)]$

Buckling about z-z (minor) axis

$\bar{\lambda}_{z}=\lambda_{z} / 93.9 \varepsilon=97.5 /(93.9 \times 0.924)=1.12$ [EC3 6.3.1.3]
Use curve c: $\alpha=0.490 \quad \phi=0.5\left(1+\alpha(\bar{\lambda}-0.2) \bar{\lambda}^{2}\right)=1.36$ [EC3 Table 6.2]

EuroBeam from Greentram Software Typical calculations

Flexural buckling reduction factor, $\left.\chi_{z}=1 /\left(\phi+\sqrt{(} \phi^{2}-\bar{\lambda}^{2}\right)\right)=0.472$ [EC3 (6.49)]
Design buckling resistance, $\mathrm{N}_{\mathrm{b}, \mathrm{z}, \mathrm{Rd}}=\chi_{\mathrm{z}}$ A.f $_{\mathrm{y}} / \gamma_{\mathrm{M} 1}=0.472 \times 58.7 \times 100 \times 275 /(1.0 \times 1000)=762 \mathrm{kN} \mathrm{OK}[E C 3(6.47)]$

Bending about y-y (major) axis:

Design moment, $\mathrm{M}_{\mathrm{y}, \mathrm{Ed}}=11.1 \mathrm{kNm}$
Moment resistance, $M_{c, y, R d}=f_{y} \cdot W_{p l, y}=275 \times 497 / 1000=136.7 \mathrm{kNm} \mathrm{OK}$
Calculate buckling resistance moment
Design buckling resistance moment, $\mathrm{M}_{\mathrm{b}, \mathrm{y}, \mathrm{Rd}}=\chi_{\mathrm{LT}, \bmod } \cdot \mathrm{M}_{\mathrm{c}, \mathrm{y}, \mathrm{Rd}}$
$M_{c r}=C_{1}\left(\pi^{2} E_{z} / L_{\text {eff }}^{2}\right)\left[N\left(I_{w} / I_{z}+L_{\text {eff }}^{2} \mathrm{GI}_{\mathrm{t}} /\left(\pi^{2} \mathrm{EI}_{\mathrm{z}}\right)\right]=346\right.$ [NCCI SN003 2(1)]
$\underline{C}_{1}=1.77$ (user-entered value) $\quad \lambda_{L T}=\sqrt{ }\left(M_{c, y, R d} / M_{c r}\right)=0.628$
$\lambda_{\mathrm{LT}, 0}=0.4 \quad \beta=0.75$ [EC3 UK NA 2.17]
Use buckling curve b : $\underline{\alpha}=0.340$ [EC3 Tables 6.3/6.4 NA2.17]
$\bar{\phi}_{L T}=0.5\left[1+\alpha_{L T}\left(\bar{\lambda}_{L T}-\bar{\lambda}_{L T, 0}\right)+\beta \bar{\lambda}_{L T}{ }^{2}\right]=0.687$

$M_{b, y, R d}=\chi_{L T} \cdot M_{c, y, R d} / \gamma_{M}=0.904 \times 136.7 / 1.0=123.6 \mathrm{kNm}$

Bending about z-z (minor) axis:

Design moment, $\mathrm{M}_{z, \mathrm{Ed}}=0.350 \mathrm{kNm}$
Moment resistance, $\mathrm{M}_{\mathrm{z}, \mathrm{cb}, \mathrm{Rd}}=\mathrm{f}_{\mathrm{y}} \cdot \mathrm{W}_{\mathrm{pl}, \mathrm{z}}=275 \times 231.0 / 1000=63.5 \mathrm{kNm}$
Summary:

$$
\begin{aligned}
\mathrm{N}_{\mathrm{Ed}} / \mathrm{N}_{\text {min }, \mathrm{b}, \mathrm{Rd}}=589 / 762=0.773[1] \\
\mathrm{M}_{\mathrm{y}, \mathrm{Ed}} \mathrm{M}_{\mathrm{bs}}=11.1 / 123.6=0.090[2] \\
\mathrm{M}_{\mathrm{z}, \mathrm{Ed}} / \mathrm{M}_{\mathrm{z}, \mathrm{cb}, \mathrm{Rd}}=0.350 / 63.5=0.006[3]
\end{aligned}
$$

Sum of stress ratios $[1]+[2]+1.5 \times[3]=\overline{\mathbf{0 . 8 7 1}} \mathbf{O K}$ subject to all SNO48b criteria being complied with

Baseplate calculation (considering axial load only)

Design compression force on baseplate, $\mathrm{N}_{\mathrm{Ed}}=589 \mathrm{kN}$
Concrete grade $\mathrm{C} 20 / 25$: cylinder strength, $\mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2}$
Concrete strength, $\mathrm{f}_{\mathrm{cd}}=\alpha_{c c} . \mathrm{f}_{\mathrm{ck}} / \gamma_{\mathrm{M}}=0.85 \times 20 / 1.5=11.3 \mathrm{~N} / \mathrm{mm}^{2}$
Concrete design strength, $\mathrm{f}_{\mathrm{jd}}=\beta_{\mathrm{j}} \cdot \alpha \cdot \mathrm{f}_{\mathrm{cd}}=11.3 \mathrm{~N} / \mathrm{mm}^{2} \quad(\beta=2 / 3 ; \alpha$ taken as 1.5) [SN037 A2]
Minimum area required $=F_{c} / f_{j d}=589 \times 1000 / 11.3=51,971 \mathrm{~mm}^{2}$
Base is sized as a large projection base plate (equal projection from all faces of member) [EC3-1-8 6.2.5]
Min required projection, $c=34.4 \mathrm{~mm}$ Minimum base plate size $=272 \times 273 \mathrm{~mm}$
Minimum thickness $=c \sqrt{ }\left(3 x_{j d} / f_{y}\right)=12.1 \mathrm{~mm} \quad\left(\mathrm{f}_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}\right)$
Use $550 \times 550 \times 75 \mathrm{~mm}$ S275 base plate
Pressure on underside of plate $=589 / 51,971=11.3 \mathrm{~N} / \mathrm{mm}^{2}$
Bending stress at root of plate projection $=11.3 \times 34.4 \times(34.4 / 2) /(75 \times 75 / 6)=7.14 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{OK}$

Notes

You can add your own notes to calculations if desired

