EuroBeam from Greentram Software

Typical calculations produced by the pre-release version

Printed 15 Apr 2010 15:29

EuroBeam 1.00x0

SCIExamples.eub

Column calculation to EN1993-1-1 using S275 steel

Location: SCI Worked Examples 13: Column with reactions

Length: 5.0 m.

PosDur	Load	kN	Factored load		Offset	Moment y-y		Moment z-z		. 1
			6.10a	6.10b		6.10a	6.10b	6.10a	6.10b	+1
A G Load from	n above 377/1.3	5 = 279.3	377.0	348.7						
1 G	React 147/1.3	5 = 108.9	147.0	136.0	100	29.64	27.41			3+ +4
3 G	React 37/1.	35 = 27.4	37.0	34.2	100			3.83	3.55	31 14
4 G	React 28/1.	35 = 20.7	_28.0	25.9	100			- <u>2.90</u>	- <u>2.68</u>	
Total load		436.3	589.0	544.8		29.64	27.41	0.93	0.86	+2

Load offsets are measured in mm. from faces of member; moments in kNm

Use: 203 x 203 x 46 UKC

Section properties: Gross area, $A_a = 58.7 cm^2$ T = 11.0mm $r_v = 5.13$ cm D = 203.2 mm t = 7.20 mm $W_{pl,y} = 497$ cm³ $Z_y = 152$ cm³

Design strength, $p_v = 275 \text{ N/mm}^2$ $\epsilon = 0.924$

Classification: Flange: c/t = $88.0/11.0 = 8.00 \le 9\epsilon$ (8.32): Class 1, plastic Major axis: $L_{Ex} = 1.0L = 5.00$ m. Slenderness, $\lambda_y = 5.00$ x 100/8.82 = 56.7 Minor axis: $L_{Ey} = 0.5L = 2.50$ m. Slenderness, $\lambda_z = 2.50$ x 100/5.13 = 48.7

Compression:

Design axial load, N_{Ed} = 589.0 kN

Design compression resistance, $N_{c,Rd} = Af_y/\gamma_{M0} = 58.7 \text{ x } 100 \text{ x } 275/(1.0 \text{ x } 1000) = 1,614 \text{ kN}$

Calculate flexural buckling resistances, N_{c,Rd}

Buckling about major axis

 $\overline{\lambda}_{v} = \lambda_{v}/93.9\epsilon = 56.7/(93.9 \times 0.924) = 0.653$

Use curve b: $\alpha = 0.340$ $\phi = 0.5(1 + \alpha(\overline{\lambda} - 0.2)\overline{\lambda}^2) = 0.790$

 $\chi = 1/(\phi + \lambda(\phi^2 - \overline{\lambda}^2)) = 0.810$

Design buckling resistance, $N_{c,Rd} = \chi A_{fy}/\gamma_{M1} = 0.810 \times 58.7 \times 1000 \times 275/(1.0 \times 1000) = 1,307 \text{ kN OK}$

Buckling about minor axis

 $\overline{\lambda}_z = \lambda_z/93.9\epsilon = 48.7/(93.9 \times 0.924) = 0.561$

Use curve c: $\alpha = 0.490$ $\phi = 0.5(1 + \alpha(\overline{\lambda} - 0.2)\overline{\lambda}^2) = 0.746$

 $\chi = 1/(\phi + \sqrt{(\phi^2 - \overline{\lambda}^2)}) = 0.808$

Design buckling resistance, $N_{c,Rd} = \chi A_{fy}/\gamma_{M1} = 0.808 \times 58.7 \times 1000 \times 275/(1.0 \times 1000) = 1,304 \text{ kN OK}$

Bending about y-y (major) axis:

Design moment, My,Ed: 29.6 kNm

Classification: Flange: c/t = $88.0/11.0 = 8.00 \le 9\epsilon$ (8.32): Class 1, plastic Table 5.2 Web: c/t = $160.8/7.2 = 22.3 \le 72\epsilon$ (66.6): Class 1, plastic

Moment capacity, $M_{c,y,Rd} = p_y.W_{pl,y} = 275 \text{ x } 497/1000 = 136.7 \text{ kNm OK}$

Calculate Buckling Resistance Moment

Design buckling resistance moment, $M_{b,Rd} = \chi_{LT,mod}.M_{c,Rd}$

 $M_{cr} = C_1(\pi^2 E I_z / L_{eff}^2) [J(I_w / I_z + L_{eff}^2 G I_t / (\pi^2 E I_z)] = 579.6 \text{ NCCI SN003 2(1)}$

 $\overline{\lambda}_{LT} = \sqrt{(M_{c,y,Rd}/M_{cr})} = 0.486$

 $\bar{\lambda}_{LT.0} = 0.4$ B = 0.75 [EC3 UK NA 2.17]

Use buckling curve b: $\alpha = 0.340$ [EC3 Tables 6.3/6.4 NA2.17]

$$\phi_{LT} = 0.5[1 + \alpha_{LT}(\overline{\lambda}_{LT} - \overline{\lambda}_{LT,0}) + B\overline{\lambda}_{LT}^2] = 0.603$$

$$\chi_{LT} = 1/[\phi_{LT} + J(\phi_{LT}^2 - B\overline{\lambda}_{LT}^2)] = 0.966$$
 [EC3 (6.56)]

 $M_{b,y,Rd} = \phi_{LT}.M_{c,y,Rd}/\gamma_M = 0.603 \text{ x } 136.7/1.0 = 132.0 \text{ kNm}$

Bending about z-z (minor) axis:

Design moment, Mz.Ed: 0.932 kNm

Moment capacity, $M_{z,Rd} = f_y.W_{pl,y} = 275 \times 231.0/1000 = 63.53 \text{ kNm}$

EuroBeam from Greentram Software

Typical calculations produced by the pre-release version

Printed 15 Apr 2010 15:29

EuroBeam 1.00x0 SCIExamples.eub

Summary: $F_c/P_c = 589.0/1,304 = \quad 0.452 \quad \text{[1]} \\ M_x/M_{bs} = 29.64/132.0 = \quad 0.224 \quad \text{[2]}$

 $M_y/p_y.Z_y = 0.9324/63.53 = 0.015$ [3]

Sum of stress ratios [1] + [2] + 1.5 x [3] = $\overline{0.698}$ OK

Baseplate calculation (considering axial load only)

Factored load on base, $N_{Ed} = 589.0kN$

Concrete cylinder strength, $f_{ck} = 20 \text{ N/mm}^2$; Concrete strength, $f_{cd} = f_{ck}/\gamma_M = 20/1.5 = 13.3 \text{ N/mm}^2$

Concrete design strength, $f_{id} = B_i \cdot \alpha \cdot f_{cd} = 13.3 \text{ N/mm}^2$ (B = 2/3; α taken as 1.5) [SN037 A2]

Minimum area required = F_0/f_{jd} = 589.0 x 1000/13.3 = 66,263mm²

Base is sized as a large projection base plate (equal projection from all faces of member) [EC3-1-8 6.2.5]

Min required projection, c = 43.8mm Minimum base plate size = 291 x 292mm

Minimum thickness = $K_v/(3 \times B.f_{ck}/f_v)$ = 13.6mm (B = 2/3; f_v = 275N/mm²)

Use 300 x 300 x 15mm base plate

Pressure on underside of plate = 589.0/66,263 = 8.89 N/mm²

Bending stress at root of plate projection = $8.89 \times 43.8 \times (43.8/2)/(15 \times 15/6) = 227 \text{ N/mm}^2 \text{ OK}$

To justify α being taken as 1.5, min. base size area = 1.5 x min plate size = 437 x 437 mm.